Hierarchical Cell Structures for Segmentation of Voxel Images
نویسندگان
چکیده
We compare three hierarchical structures, S15, C15, C19, that are used to steer a segmentation process in 3d voxel images. There is an important topological difference between C19 and both others that we will study. A quantitative evaluation of the quality of the three segmentation techniques based on several hundred experiments is presented.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملQuantitative Study of Brain Anatomy
We introduce a system that automatically segments and classifies features in 3-D images. The system’s accuracy is comparable to manual segmentation. It takes 12 minutes to segment and classify 144 brain structures in 256x256x124 voxel image, while similar work by human took 8 months. The process starts with an atlas, a hand segmented and classified MRI of a normal brain. Given a subject’s data,...
متن کاملDeep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network
Segmentation of anatomical structures in medical images is often based on a voxel/pixel classification approach. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images that fosters categorization. We propose a novel system for voxel classification integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کامل